Экономические темы
1 1 1 1 1 1 1 1 1 1 Рейтинг 5.00 (1 Голос)

Задача по объемам продаж с решением

Имея информацию о длительностях отчетных периодов (t) и статистику продаж товара (Q) проектно-изыскательным предприятием, проектирующем и изготавливающем образцы новой техники, определите предполагаемый объем продаж товара с помощью метода векторного прогнозирования.

№ периода

1

2

3

4

5

6

7

8

9

10

Q, тыс. шт.

508

535

494

580

430

460

490

570

   

t, дни

63

63

64

62

63

62

64

64

63

63

1-ый  этап  решения задачи.

Шаг 1

Расчет ординат интегрального вектора рекуррентной формуле

Pin = (Pi-1N + Pi-1N-1) / 2, где

n – номер этапа усреднения

i – порядковый номер точки, соответствующей значению объемной характеристики на n-м этапе усреднения

Порядковый номер точки, соответствующей значению объемной характеристики на n-м этапе усреднения (i)

Этап усреднения (n)

1

2

3

4

5

6

7

512,5

514,5

537

505

445

475

530

1

518

525,75

521

475

460

502,5

 

2

521,88

523,38

498

467,5

481,25

   

3

522,63

510,69

482,75

474,38

     

4

516,66

496,72

478,57

       

5

506,69

487,645

         

6

                   

1) P11 = (508+535) /2 =521,5 2) P12 = (521,5+514,5) /2 = 518

P21 = (535+494) /2 =514,5 P22 = (514,5+537) /2 =525,75

P31 = (494+580) /2 = 537 P32=(537+505) /2 =521

P41 = (580+430) /2 =505 P42=(505+445)/2=475

P51 = (430+460) /2 =445 P52=(445+475) /2 =460

P61 = (460+490) /2 = 475 P62=(475+530) /2 =502,5

P71 = (490+570) /2 =530

3)P13= (518+525,75) /2=521,88 4) Р14=(521,88+523,38)/2= 522,63

Р23 = (525,75+521) /2 =523,38 Р24=(523,38+498)/2= 510,69

Р33 = (521+475) /2 =498 Р34 = (498+467,5)/2=482,75

Р43 = (475+460) /2 = 467,5 Р44 = (467,5+481,25)/2=474,38

Р53 = (460+502,5) /2 =481,25

5)Р15 = (522,63+510,69) /2 = 516,66 6) Р16 = (516,66+496,72) /2 = 506,69

Р25 = (510,69+482,75) /2 = 496,72 Р16 = (496,72+478,57) /2 = 487,645

Р35 = (482,75+474,38) /2 = 478,57

Шаг 2

Расчет средней продолжительности анализируемого периода

tc = ∑ ti / (N-1), где

N – количество исходных точек,

ti – длительность периода

tc = 631/9 =70,11 (день)

Шаг 3

Расчет центра анализируемого периода

ty = ∑ ti / 2, где

ty = 631/ 2 =315,5 (дня)

Шаг 4

Расчет времени (tа), на период которого прогнозируется поведение системы при отсчете от первой точки интегрального вектора (PiN-2)

tа = ty + tс / 2 + tN + 1

tа = 315,5+70,11/2+63= 413,56 (дня)

Шаг 5

Расчет изменения поведения системы по отношению к анализируемому периоду средней длины (∆Р)

∆Р = P2(N-2) + P1(N-2)

∆Р = 487,645-506,69= -19,05

Шаг 6

Расчет изменения поведения системы в первом прогнозируемом периоде при отсчете от первой точки интегрального вектора

∆Р = ∆p * ta / tc

∆Р = -19,05*413,56/70,11=-112,4

Шаг 7

Определения поведения системы в первом прогнозируемом периоде

PN+1 = P1(N-2) + ∆Р

PN+1 = 487,645 +(-112,4) = 375,25 = 375 тыс. штук

2-ой   этап  решение задачи

Размерность массива анализируемых данных на этапе 2 не меняется, т.е. принимаем объемные значения со второго периода по N+1.

Таблица 2.3

№ периода

1

2

3

4

5

6

7

8

9

10

Q, тыс. шт.

508

535

494

580

430

460

490

570

   

t, дни

63

63

64

62

63

62

64

64

63

63

Шаг 1

Порядковый номер точки, соответствующей значению объемной характеристики на n-м этапе усреднения (i)

Этап усреднения (n)

1

2

3

4

5

6

7

514,5

537

505

445

475

530

530

1

525,75

521

475

460

502,5

530

 

2

523,38

498

467,5

481,25

516,25

   

3

510,69

482,75

474,38

498,75

     

4

496,72

478,57

486,57

       

5

487,645

482,57

         

6

                 

P71 = (490 + 570) / 2 = 530

P62 = (530 + 530) / 2 = 530

Р53 = (530 + 502,5) / 2 = 516,25

Р44 = (516,25 + 481,25) / 2 = 498,75

Р35 = (498,75 + 474,38) / 2 = 486,57

Р26 = (486,57+478,57) / 2 = 482,57

Шаг 2

Расчет средней продолжительности анализируемого периода

tc = ∑ ti / (N-1), где

N – количество исходных точек,

ti – длительность периода

tc = 568/8=71 (день)

Шаг 3

Расчет центра анализируемого периода

ty = ∑ ti / 2, где

ty = 568/2=284 (дня)

Шаг 4

Расчет времени (tа), на период которого прогнозируется поведение системы при отсчете от первой точки интегрального вектора (PiN-2)

tа = ty + tс / 2 + tN + 1

tа = 284+71/2+63=382,5 (дней)

Шаг 5

Расчет изменения поведения системы по отношению к анализируемому периоду средней длины (∆Р)

∆Р = P2(N-2) + P1(N-2)

∆Р =482,57-487,645=-5,075

Шаг 6

Расчет изменения поведения системы в первом прогнозируемом периоде при отсчете от первой точки интегрального вектора

∆Р = ∆p * ta / tc

∆Р = -5,075*382,5/71=-27,34

Шаг 7

Определения поведения системы в первом прогнозируемом периоде

PN+1 = P1(N-2) + ∆Р

PN+1 = 487,645-27,34=1118,21=460,31= 460 тыс. штук

Предполагаемый объем продаж в 8 периоде составит 375 тыс.штука, а в 9 периоде 460 тыс.штук.

 

Задача определение объема продаж методом векторного прогнозирования - 5.0 out of 5 based on 1 vote

Добавить комментарий


Защитный код
Обновить

Google